
Manipulating data in R: an introduction to the dplyr
package

Vittorio Perduca, Université Paris Descartes
vittorio.perduca@parisdescartes.fr, May 2018

Contents
1. Introduction 1

1.1 Loading dplyr and example . 1
1.2 Data frames and tibbles . 2
1.3 The five verbs . 4

2. Selecting variables 4
2.1 A very convenient tool: the pipe operator %>% . 5
2.2 Helper functions . 5

3. Filtering and reordering observations 6

4. Creating new variables 6

5. Summarising data 7
5.1 Grouping by variables . 7

6. Solutions to exercises 9

1. Introduction

dplyr is a 2014 package that provides a set of tools for efficiently manipulating data sets in R. dplyr
belongs to a set of data analysis packages known as the tidyverse and developed by Hadley Wickham and
collaborators.

With respect to basic R, dplyr provides a grammar of data manipulation based on 5 functions (or verbs) that
helps the user to conceptualize and implement in a natural fashion all sort of data handling, allowing very
fast data exploration. In this introductory tutorial we will focus on these five verbs; we won’t cover advanced
material such as joining (ie merging) data structures.

1.1 Loading dplyr and example

For illustration purposes, we start by considering mtcars, a popular data set about fuel consumption and 10
other variables of automobile design and performance for 32 automobiles (1973–74 models).
head(mtcars)

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

1

mailto:vittorio.perduca@parisdescartes.fr
https://en.wikipedia.org/wiki/Hadley_Wickham

Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
mtcars$model <- rownames(mtcars) # we add a column with model names

What are the car models with 6 ore more cylinders and a consumption less than 20 miles/gallon? We can
find out with basic R:
which(mtcars$cyl <= 6 & mtcars$mpg < 20) # row numbers, not really satisfying...

[1] 6 10 11 30
x <- mtcars[mtcars$cyl <= 6 & mtcars$mpg < 20,]
x$model # ... better

[1] "Valiant" "Merc 280" "Merc 280C" "Ferrari Dino"
mtcars[mtcars$cyl <= 6 & mtcars$mpg < 20, "model"] # same thing in one line

Here we will learn how to use dplyr:
install.packages("dplyr") # to install the package for the first time
library(dplyr)

Warning: package 'dplyr' was built under R version 3.4.4
x <- filter(mtcars, cyl <= 6, mpg < 20)

Warning: package 'bindrcpp' was built under R version 3.4.4
select(x, model)

model
1 Valiant
2 Merc 280
3 Merc 280C
4 Ferrari Dino
select(filter(mtcars, cyl <= 6, mpg < 20), model) # same in one line: not nice
mtcars %>% filter(cyl <= 6, mpg < 20) %>% select(model) # super nice!

model
1 Valiant
2 Merc 280
3 Merc 280C
4 Ferrari Dino

1.2 Data frames and tibbles

In the following, we will work with a fairly large data set about airline flights that departed from Huston
called hflights. This data is found in the package hflights.
install.packages("hflights") # To install the package with data (25 MB)
library(hflights)

hflights is represented as a data frame, the standard R data structure, with more than 200,000 rows and 21
columns:
class(hflights)

[1] "data.frame"

2

dim(hflights)

[1] 227496 21
hflights # try this...
head(hflights) # better

Exercise 0. Read the documentation about hflights to learn about its variables.

dplyr makes it possible to represent the same data structure using a tibble, a more advanced version of data
frames. Tibbles are particular useful for large data sets because only the first few rows and columns are
printed, together with the data types:
hflights2 <- tbl_df(hflights) # converts a data frame into a tibble
hflights2 # to look at data for the first time

A tibble: 227,496 x 21
Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier
* <int> <int> <int> <int> <int> <int> <chr>
1 2011 1 1 6 1400 1500 AA
2 2011 1 2 7 1401 1501 AA
3 2011 1 3 1 1352 1502 AA
4 2011 1 4 2 1403 1513 AA
5 2011 1 5 3 1405 1507 AA
6 2011 1 6 4 1359 1503 AA
7 2011 1 7 5 1359 1509 AA
8 2011 1 8 6 1355 1454 AA
9 2011 1 9 7 1443 1554 AA
10 2011 1 10 1 1443 1553 AA
... with 227,486 more rows, and 14 more variables: FlightNum <int>,
TailNum <chr>, ActualElapsedTime <int>, AirTime <int>, ArrDelay <int>,
DepDelay <int>, Origin <chr>, Dest <chr>, Distance <int>,
TaxiIn <int>, TaxiOut <int>, Cancelled <int>, CancellationCode <chr>,
Diverted <int>
glimpse(hflights2) # to catch a glimpse

Observations: 227,496
Variables: 21
$ Year <int> 2011, 2011, 2011, 2011, 2011, 2011, 2011, 20...
$ Month <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
$ DayofMonth <int> 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 1...
$ DayOfWeek <int> 6, 7, 1, 2, 3, 4, 5, 6, 7, 1, 2, 3, 4, 5, 6,...
$ DepTime <int> 1400, 1401, 1352, 1403, 1405, 1359, 1359, 13...
$ ArrTime <int> 1500, 1501, 1502, 1513, 1507, 1503, 1509, 14...
$ UniqueCarrier <chr> "AA", "AA", "AA", "AA", "AA", "AA", "AA", "A...
$ FlightNum <int> 428, 428, 428, 428, 428, 428, 428, 428, 428,...
$ TailNum <chr> "N576AA", "N557AA", "N541AA", "N403AA", "N49...
$ ActualElapsedTime <int> 60, 60, 70, 70, 62, 64, 70, 59, 71, 70, 70, ...
$ AirTime <int> 40, 45, 48, 39, 44, 45, 43, 40, 41, 45, 42, ...
$ ArrDelay <int> -10, -9, -8, 3, -3, -7, -1, -16, 44, 43, 29,...
$ DepDelay <int> 0, 1, -8, 3, 5, -1, -1, -5, 43, 43, 29, 19, ...
$ Origin <chr> "IAH", "IAH", "IAH", "IAH", "IAH", "IAH", "I...
$ Dest <chr> "DFW", "DFW", "DFW", "DFW", "DFW", "DFW", "D...
$ Distance <int> 224, 224, 224, 224, 224, 224, 224, 224, 224,...
$ TaxiIn <int> 7, 6, 5, 9, 9, 6, 12, 7, 8, 6, 8, 4, 6, 5, 6...

3

$ TaxiOut <int> 13, 9, 17, 22, 9, 13, 15, 12, 22, 19, 20, 11...
$ Cancelled <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...
$ CancellationCode <chr> "", "", "", "", "", "", "", "", "", "", "", ...
$ Diverted <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,...

Note that a tibble is also a data frame so you can do everything with a tibble that you could do with a data
frame. All dplyr verbs apply both to tibbles and data frames.

1.3 The five verbs

dplyr has a function for each basic verb of data manipulation. Here we will learn how to work with the most
important five verbs:

• select() to select columns (ie variables) based on their names
• filter() to select rows (ie observations) based on their values
• arrange() to reorder rows (observations)
• mutate() to add new columns (variables) that are functions of existing variables
• summarise() to condense multiple values to a single value.

2. Selecting variables

The syntax is

select(df, variable 1, variable 2, ...)

where df is the data frame (or tibble) and variable 1 , variables 2, etc are the names of the columns to
keep. Very conveniently, it is not required to use the $ sign and/or quotation marks for variables’ names.

We print the two columns with all flights’ origins and destinations:
select(hflights2, Origin, Dest)

A tibble: 227,496 x 2
Origin Dest
* <chr> <chr>
1 IAH DFW
2 IAH DFW
3 IAH DFW
4 IAH DFW
5 IAH DFW
6 IAH DFW
7 IAH DFW
8 IAH DFW
9 IAH DFW
10 IAH DFW
... with 227,486 more rows
try the same but with the data frame hflights

Note that select() does not change the data frame it is called on:
dim(hflights2)

[1] 227496 21
orig_dest <- select(hflights2, Origin, Dest)
dim(orig_dest)

4

[1] 227496 2

2.1 A very convenient tool: the pipe operator %>%

We are interested in the number of different destinations of flights departing from Houston. We can use
unique() to eliminates multiple values in Dest and then nrow() to compute the number of (now distinct)
observations in the resulting column:
nrow(unique(select(hflights2, Dest)))

[1] 116

This is not very easy to read nor to write. Instead we can use the pipe operator %>% to concatenate the
different steps of our analysis into a pipeline: we take hflights, then we select Dest, then we take its values
without considering repetitions, and at last we count the number of resulting values:
hflights2 %>% select(Dest) %>% unique %>% nrow()

[1] 116

Note that n_distinct() is the dplyr preferred function to count the number of distinct values in a column:
hflights2 %>% select(Dest) %>% n_distinct()

[1] 116

The %>% operators passes the object on the left to the first argument of the function on the right:

x %>% f(y) gives f(x,y)

This corresponds to our way of thinking and makes it possible to code in a progressively and more readable
fashion. In other words, when coding we do not have to start from the last function and then go backward,
as we would normally do using basic R. Instead we are now free to build our sequence of instructions from
the very first object, that is data. This approach is much more flexible and allows to change very quickly our
queries to explore data.

Exercise 1. Use the %>% to compute the square root of 9.

The %>% operator can also be used to pass the object on the left to any argument of the function on the right,
not only the first one. In this case, the argument position is to be indicated with the placeholder .:

x %>% f(y, .) gives f(y,x)

Example:
ratio <- function(x,y) x/y
1 %>% ratio(2)

[1] 0.5
2 %>% ratio(1, .)

[1] 0.5

2.2 Helper functions

select() is often used in combination with very flexible helper functions that help to identify the variables
of interest. You can access the list of helpers and their documentation with
?starts_with

5

We select the variable FlightNum together with the variables DepTime, AirTime, ActualElapsedTime and
ArrTime,
hflights2 %>% select(FlightNum, ends_with("Time"))
hflights[, c("FlightNum", "DepTime", "AirTime","ActualElapsedTime", "ArrTime")] # basic R

A very useful helper is ‘num_range(). For instance num_range("x", 1:5) gives the variables named x01,
x02, x03, x04 and x05. Note that contrary to select() and the other five verbs, when referring to variables
inside an helper function, you must use quotes.

You can also use operators that are usually reserved for numeric values, for instance to select all the consecutive
variables from Year to DayOfWeek:
hflights2 %>% select(Year : DayOfWeek)

3. Filtering and reordering observations

The syntax for extracting observations fulfilling condition cond from data frame (or tibble) df is

filter(df, cond)

Recall that the logical operators are

• x > y is TRUE if x is greater than y
• x >= y is TRUE if x is greater or equal than y
• x == y is TRUE if x is equal to y
• is.na(x) is TRUE if x is NA. Warning: never use x == NA to test if x is NA.
• x %in% c('a', 'b', 'c') is TRUE if x is in the vector c('a', 'b', 'c').
• !x is TRUE if x is FALSE and viceversa. For example, to test for non- missing values we use !is.na(x).

Going back to hflights, we keep only observations with arrival delay greater than 10 hours:
hflights2 %>% filter(ArrDelay > 600)

Exercise 2. For all flights with arrival delay greater than 10 hours, give the variables Year, Month,
DayofMonth, UniqueCarrier, FlightNum and ArrDelay.

To sort the observations in data frame df according to variable:

arrange(df, variable)

If variable is numeric, by default its values are sorted from the smallest to the greatest. Use desc(variable)
for descending order.

Exercise 3. Arrange the tibble from the previous exercise according to the arrival delay in both descending
and ascending orders.

If variable is a character variable, arrange() will sort its values according to the the alphabetical order. If
variable is a factor, R will rearrange the rows according to the order of the levels in the factor.

By adding two column names in arrange, it is possible to achieve nested sorting.

Exercise 4. Arrange the tibble from the previous exercise according to UniqueCarrier and so that for each
value of ArrDelay, observations are sorted according to the arrival delay.

4. Creating new variables

Imagine to have a data frame df with three columns: Id (the identifier), w (weight in Kg) and h (height in
m). We want to create a fourth variable bmi with the Body Mass Index: bmi = w/hˆ2. This can be easily

6

done with the mutate() function:

mutate(df, bmi = w/h^2)

Similarly, we create a new variable TotalTime measuring the total flight time, as the sum of TaxiIn (time
spent on ground before taking off), TaxiOut (ground time after landing) and AirTime:
hflights2 <- hflights2 %>% mutate(TotalTime = TaxiIn + AirTime + TaxiOut)

mutate() simply adds a new column, while keeping all others. For instance, note that hflights already has
variable ActualElapsedTime reporting the total flight time:
hflights2 %>% select(TotalTime, ActualElapsedTime) %>% head

Exercise 5. Add a new variable AverageSpeed with the average speed that each plane flew in miles per
hour: AverageSpeed = Distance / AirTime * 60.

The transmute() function adds new variables while dropping existing ones.

5. Summarising data

Creating summary statistics from a complex data set is obviously a crucial task in data analysis. In dplyr
this is done with the function summarise() that creates a new data frame with a single row with statistics.
The syntax is the same as mutate:

summarise(df, AverageBmi = mean(bmi))

will create a new data frame with a single row and a single column reporting the average bmi.

Exercise 6. Creates a data frame ex2 with the mean and standard deviations of all average plane speeds.
Warning: this variable might have missing values.

The statistics functions used should take as input one vector and returns a single number as output (the so
called aggregating functions). Two useful aggregating functions are:

• n()(with no argument): number of rows
• n_distinct(): number of unique values of a column

Exercise 7. Compute the number of flights operated by US Airways in July (code US).

Exercise 8. If the variable Cancelled is 1, then the flight was cancelled. For each airline company computes
the percentage of cancelled flights. Sort airline companies from the one with the greatest number of cancelled
flights.

5.1 Grouping by variables

Very often we are interested in computing summary statistics for each value of a given variable. For instance,
we might want to compute the average bmi separately for men and women or for each age category. In this
case we can use group_by() to create a grouped data frame in which any following operations will be done
accordingly by group:

group_by(df, sex) %>% summarise(mean(bmi))

For instance, let’s compute the average departure and arrival delays for each day of the week:
hflights2 %>% group_by(DayOfWeek) %>%

summarise(AverageArrDelay = mean(ArrDelay, na.rm = TRUE),
AverageDepDelay = mean(DepDelay, na.rm = TRUE))

7

Note how more immediate is feels compared to basic R
tapply(hflights$ArrDelay, hflights$DayOfWeek, mean, na.rm = TRUE)

When you mutate grouped data, mutate() will calculate the new variables independently for each group.
This is particularly useful when mutate() uses the rank() function, that calculates within-group rankings.
rank() takes a group of values and calculates the rank of each value within the group:
rank(c(10, 1, 4, 5))

[1] 4 1 2 3

For instance, we rank airline companies according to their average departure delay:
hflights2 %>% filter(!is.na(DepDelay), DepDelay > 0) %>% # we keep only flights with a departure delay

group_by(UniqueCarrier) %>%
summarise(avg = mean(DepDelay)) %>% # average departure delay for each company
mutate(rank = rank(avg)) %>% #
arrange(rank)

Note how complicate it would have been not to use the %>% operator in the previous example:
hflights2 <- group_by(filter(hflights2, !is.na(DepDelay), DepDelay > 0),

UniqueCarrier)

arrange(
mutate(summarise(hflights2, avg = mean(DepDelay)),

rank = rank(avg)
),
rank

)

When you stock a grouped tibble in a new tibble, the grouping variable(s) are printed at the top when
printing the tibble:
grouped <- group_by(hflights2, Month)
grouped

A tibble: 227,496 x 21
Groups: Month [12]
Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier
* <int> <int> <int> <int> <int> <int> <chr>
1 2011 1 1 6 1400 1500 AA
2 2011 1 2 7 1401 1501 AA
3 2011 1 3 1 1352 1502 AA
4 2011 1 4 2 1403 1513 AA
5 2011 1 5 3 1405 1507 AA
6 2011 1 6 4 1359 1503 AA
7 2011 1 7 5 1359 1509 AA
8 2011 1 8 6 1355 1454 AA
9 2011 1 9 7 1443 1554 AA
10 2011 1 10 1 1443 1553 AA
... with 227,486 more rows, and 14 more variables: FlightNum <int>,
TailNum <chr>, ActualElapsedTime <int>, AirTime <int>, ArrDelay <int>,
DepDelay <int>, Origin <chr>, Dest <chr>, Distance <int>,
TaxiIn <int>, TaxiOut <int>, Cancelled <int>, CancellationCode <chr>,
Diverted <int>

To remove grouping, use ungroup():

8

ungroup(grouped)

A tibble: 227,496 x 21
Year Month DayofMonth DayOfWeek DepTime ArrTime UniqueCarrier
* <int> <int> <int> <int> <int> <int> <chr>
1 2011 1 1 6 1400 1500 AA
2 2011 1 2 7 1401 1501 AA
3 2011 1 3 1 1352 1502 AA
4 2011 1 4 2 1403 1513 AA
5 2011 1 5 3 1405 1507 AA
6 2011 1 6 4 1359 1503 AA
7 2011 1 7 5 1359 1509 AA
8 2011 1 8 6 1355 1454 AA
9 2011 1 9 7 1443 1554 AA
10 2011 1 10 1 1443 1553 AA
... with 227,486 more rows, and 14 more variables: FlightNum <int>,
TailNum <chr>, ActualElapsedTime <int>, AirTime <int>, ArrDelay <int>,
DepDelay <int>, Origin <chr>, Dest <chr>, Distance <int>,
TaxiIn <int>, TaxiOut <int>, Cancelled <int>, CancellationCode <chr>,
Diverted <int>

6. Solutions to exercises

Exercise 0.
?hflights

Exercise 1.
9 %>% sqrt()

Exercise 2.
ex <- hflights2 %>% filter(ArrDelay > 600) %>%

select(Year : DayofMonth, UniqueCarrier, FlightNum, ArrDelay)

Exercise 3.
Ascending
ex %>% arrange(ArrDelay)

Descending
ex %>% arrange(desc(ArrDelay))

Exercise 4.
hflights2 %>% filter(ArrDelay > 600) %>%

select(Year : DayofMonth, UniqueCarrier, FlightNum, ArrDelay) %>%
arrange(UniqueCarrier, ArrDelay)

Exercise 5.
ex <- hflights2 %>% mutate(AverageSpeed = Distance / AirTime * 60)

Exercise 6.

9

ex %>% summarise(mean(AverageSpeed, na.rm = TRUE),
sd(AverageSpeed, na.rm = TRUE))

Exercise 7.
hflights2 %>% filter(UniqueCarrier == "US", Month == 7) %>%

select(FlightNum, UniqueCarrier) %>%
summarise(n_distinct(FlightNum))

Exercise 8.
hflights2 %>% group_by(UniqueCarrier) %>%

summarise(PrcCancelled = mean(Cancelled) * 100) %>%
arrange(desc(PrcCancelled))

10

	1. Introduction
	1.1 Loading dplyr and example
	1.2 Data frames and tibbles
	1.3 The five verbs

	2. Selecting variables
	2.1 A very convenient tool: the pipe operator %>%
	2.2 Helper functions

	3. Filtering and reordering observations
	4. Creating new variables
	5. Summarising data
	5.1 Grouping by variables

	6. Solutions to exercises

