raphael.lachieze-rey@math.cnrs.fr
I am "Maitre de conférences" (Assistant professor) in the Laboratoire MAP5 at the Université Paris Cité , in the probability team.
Member of the CNRS research group
GDR GEOSTO
Limit theorems in Stochastic Geometry
Random sets, excursions and nodal sets
Point processes, hyperuniformity and variance linearity
Loïc Thomassey, PhD student, 2021 -
Diala Hawat, PhD student, 2020 -
Safa Ladgham,PhD student, 2018 - 2022, manuscrit
with Loïc Thomassey,
Nodal replication of random waves , 2023
[arXiv]
with Safa Ladgham,
Local repulsion of planar Gaussian critical points , 2022
[arXiv]
with Diala Hawat, Guillaume Gautier and Rémi Bardenet,
On estimating the structure factor of a point process, with applications to hyperuniformity
to appear in Statistics and Computing 2022
[arXiv]
Production d'un Package Python, Structure factor, An open-source Python package for studying the hyperuniformity of a spatial point process via the estimation of its structure factor.
Lien Github
with Stephen Muirhead
Asymptotics for the critical level and a strong invariance principle for high intensity shot noise fields
, 2021
to appear in Annales IHP B,
[arXiv]
Diophantine Gaussian excursions and random walks, 2022
Electronic Journal of Probability, 27 (126), pp.1-33
[arXiv]
with Giovanni Peccati, Xiaochuan Yang
Quantitative two-scale stabilization on the Poisson space, 2020
Annals of Applied Probability, 32 (4), 3085-3145
[arXiv]
Variance linearity for real Gaussian zeros, 2022
Annales IHP, 58 (4), pp.2114 - 2128,
[arXiv]
with Stephen Muirhead
Percolation Of The Excursion Sets Of Planar Symmetric Shot Noise Fields, 2019
[arXiv]
Stochastic Processes and their Applications,Volume 147, May 2022, Pages 175-209
with B. Arras, J. Breton, Aurelia Deshayes, Olivier Durieu
SOME RECENT ADVANCES FOR LIMIT THEOREMS, 2019
ESAIM: PROCEEDINGS AND SURVEYS, 2020, Vol. 68, p. 73-96
with M. Mehdi Moradi, Ottmar Cronie, Ege Rubak, Jorge Mateu, Adrian Baddeley
Resample-smoothing of Voronoi intensity estimators, 2019
[arXiv]
Statistics and Computing volume 29, pages 995–1010(2019)
Normal convergence of nonlocalised geometric functionals and shot-noise excursions, 2019 ,
[arXiv],
Annals of Applied Probability, 2019, Vol. 29, No. 5, 2613-2653.
With Matthias Schulte, Joe Yukich,
Normal
approximation for stabilizing functionals, 2019,
[arXiv],
Annals of Applied Probability , Vol. 29 (2), pp. 931-993
Bicovariograms and Euler
characteristic of random fields excursions, 2019,
[arXiv]
Stochastic Processes and their applications, Volume 129, Issue 11, November 2019, Pages 4687-4703
with Larry Goldstein, Tobias Johnson
Bounds
to the normal for proximity region graphs, 2018 ,
[arXiv]
Stochastic
Processes and their Applications, Volume 128, Issue 4, April 2018, Pages 1208-1237
Bicovariograms and Euler
characteristic of regular sets , 2018,
[arxiv] ,
Mathematische
Nachrichten 291 (2-3), pp. 398-419.
with Andreas Basse-O'Connor and Mark Podolskij,
Power variation for a class of stationary increments Lévy driven moving averages, 2017 ,
[arXiv],
Annals of Probability 2017, Vol. 45, No. 6B, 4477-4528.
with Giovanni Peccati,
New
Berry-Esseen bounds for functionals of binomial point processes , 2017,
[arXiv],
Annals of Applied Probability, Volume 27, Number 4 (2017), 1992-2031.
with Sergio Vega,
Boundary density and Voronoi set estimation for irregular sets , 2017,
[Arxiv]
Transactions of the AMS 369, 2017, 4953-4976 ,
An analogue of Kac-Rice
formula for Euler characteristic, 2016,
[arXiv]
with Matthias Reitzner,
U-statistics
in stochastic geometry
, 2016
[arXiv],
chapter in "Stochastic analysis for
Poisson point processes: Malliavin calculus, Wiener-Ito chaos
expansions and stochastic geometry", 2016, Springer.
with Bruno Galerne,
Random
measurable sets and covariogram realisability problems
, 2015,
[arXiv],
Advances in Applied Probability,
Volume 47, Issue 3
September 2015 , pp. 611-639
with Ilya Molchanov,
Regularity
conditions in the realisability problem in applications to point
processes and random closed sets
, 2015,
[arXiv]
Annals of Applied Probability , Volume 25, Number 1 (2015), 116-149.
Realisability conditions for second order marginals of biphased
media
, 2015,
[arXiv]
Random Structures and Algorithms,Volume47, Issue3
October 2015 ,
Pages 588-604.
with Giovanni Peccati,
Fine
Gaussian fluctuations on the Poisson space II: rescaled kernels,
marked processes and geometric U -statistics
, 2013,
[arXiv]
Stochastic Processes and their applications,
Volume 123, Issue 12, December 2013, Pages 4186-4218,
with Giovanni Peccati,
Fine Gaussian fluctuations on the Poisson space, I: contractions,
cumulants and geometric random graphss
, 2013,
Electronic Journal of Probability 18 (2013), no. 32, 1–32.
2013.
The convex class of
realisable unit covariances
, 2013,
[arXiv]
Concave
majorant of stochastic processes and Burgers turbulence
, 2012,
[arXiv]
Journal of Theoretical Probability,June 2012, Volume 25, Issue 2, pp 313–332
with Youri Davydov,
Rearrangements of Gaussian fields
, 2011,
[arXiv]
Stochastic processes
and their applications,Volume 121, Issue 11, November 2011, Pages 2606-2628
Mixing
properties for STIT tessellations
, 2011,
[arXiv]
Advances in Applied Probability
Volume 43, Number 1 (2011), 40-48.
If you don't understand the CLT: Clic here
Zéros des fonctions gaussiennes analytiques (présentation pour le GT Processus ponctuels répulsifs)
CLT for Poisson U-statistics: CLT for U-statistics in the Poisson chaos and applications to random graphs.
TCL pour U-statistiques Poissoniennes: TCL pour U-statistiques géométriques dans le chaos poissonien.
Realisability (eng, short version): Realisability problems with regularity conditions..
Realisability (fr): Problemes de realisabilité avec conditions de regularité.
Gaussian fields (fr): Réarrangements de champs gaussiens.
Gaussian fields (eng): Rearrangements of Gaussian fields.
PhD defense: Presentation, Université Lille 1.
STIT tessellations (english): Ergodicity of STIT tessellations.
STIT tessellations (francais): Ergodicité des mosaiques STIT.
Conférence pour TimeWorld 2021Quelles certitudes contient le hasard? (Centre National des Arts et Métiers): Vidéo Slides ici
Simulation de propagation de rumeur dans un réseau socialConférence pour la S.E.I.N:> Hasard, mesure et perception (avril 2021)
Vidéo
Slides SEIN
Visualisation interactive sur les illustres mathématiciens Français ou de tous les pays .